50 research outputs found

    Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Get PDF
    Background: The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results: The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion: Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature differentiation. The future use of Ostreococcus tauri and Physcomitrella patens as biological models should allow us to obtain a better insight into the functional importance of WOX13 OG genes

    CATMA: a complete Arabidopsis GST database

    Get PDF
    The Complete Arabidopsis Transcriptome Micro Array (CATMA) database contains gene sequence tag (GST) and gene model sequences for over 70% of the predicted genes in the Arabidopsis thaliana genome as well as primer sequences for GST amplification and a wide range of supplementary information. All CATMA GST sequences are specific to the gene for which they were designed, and all gene models were predicted from a complete reannotation of the genome using uniform parameters. The database is searchable by sequence name, sequence homology or direct SQL query, and is available through the CATMA website at http://www.catma.or

    Analysis of CATMA transcriptome data identifies hundreds of novel functional genes and improves gene models in the Arabidopsis genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the finishing of the sequencing of the <it>Arabidopsis thaliana </it>genome, the Arabidopsis community and the annotator centers have been working on the improvement of gene annotation at the structural and functional levels. In this context, we have used the large CATMA resource on the Arabidopsis transcriptome to search for genes missed by different annotation processes. Probes on the CATMA microarrays are specific gene sequence tags (GSTs) based on the CDS models predicted by the Eugene software. Among the 24 576 CATMA v2 GSTs, 677 are in regions considered as intergenic by the TAIR annotation. We analyzed the cognate transcriptome data in the CATMA resource and carried out data-mining to characterize novel genes and improve gene models.</p> <p>Results</p> <p>The statistical analysis of the results of more than 500 hybridized samples distributed among 12 organs provides an experimental validation for 465 novel genes. The hybridization evidence was confirmed by RT-PCR approaches for 88% of the 465 novel genes. Comparisons with the current annotation show that these novel genes often encode small proteins, with an average size of 137 aa. Our approach has also led to the improvement of pre-existing gene models through both the extension of 16 CDS and the identification of 13 gene models erroneously constituted of two merged CDS.</p> <p>Conclusion</p> <p>This work is a noticeable step forward in the improvement of the Arabidopsis genome annotation. We increased the number of Arabidopsis validated genes by 465 novel transcribed genes to which we associated several functional annotations such as expression profiles, sequence conservation in plants, cognate transcripts and protein motifs.</p

    Isolement et clonage de gènes du Pelargonium impliqués dans la morphogénèse et la couleur des fleurs

    No full text
    *INRA, Centre d'Angers (FRA) Diffusion du document : INRA, Centre d'Angers (FRA) Diplôme : Maîtris

    Automatic design of gene-specific sequence tags for genome-wide functional studies

    No full text
    Motivation: The availability of complete genome sequences allows the identification of short DNA segments that are specific to each annotated gene. Such unique gene sequence tags (GSTs) replace advantageously cDNAs in microarray transcript profiling experiments. In particular, probes corresponding to individual members of multigene families can be chosen carefully to avoid cross-hybridization events. Results: The Specific Primer and Amplicon Design Software (SPADS) was constructed to delineate the more divergent regions in each gene by comparing them with a completely annotated genome sequence and to select optimal primer pairs for the polymerase chain reaction amplification of one divergent region per gene. SPADS is a unique integrated tool to design specific GSTs from any public or private genome sequences and allows the user to fine-tune GST size and specificity. SPADS has been used to obtain probes for whole genome and family-wide transcript profiling, as well as inserts for gene-specific knock-out experiments. Availability: The GENOPLANTE ™ SPADS source code and web interface are available upon request. The online version is accessible vi

    What Is Present at Common Bean Subtelomeres? Large Resistance Gene Clusters, Knobs and Khipu Satellite DNA

    No full text
    In plants, the largest class of resistance (R) gene encodes nucleotide-binding leucine-rich repeat (NB-LRR) proteins. This multigene family is often organized in clusters of tightly linked genes. In the common bean (Phaseolus vulgaris L.) genome, most of the well-characterized large R gene clusters are not randomly distributed since they are often located at the ends of the linkage groups (LG), suggesting that this location is favorable for R gene proliferation. In addition, terminal knobs (heterochromatic blocks) are present at most chromosome (Chr) ends of P. vulgaris, and we have identified a satellite DNA referred to as khipu that is a component of most of them. Plasticity of subtelomeres has been described in various organisms such as yeast and human but is not well documented in plants. In common bean, the B4 cluster of R gene was shown to derive from the Co-2 R gene cluster through an ectopic recombination between non-homologous chromosomes in subtelomeric regions. These unusual features of common bean genome (subtelomeric localization of large NB-LRR sequences, the presence of terminal knobs, and plasticity of subtelomeres) have been investigated with the availability of the complete common bean genome sequence

    Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence

    No full text
    International audienceCommon bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS
    corecore